Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5373, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438425

RESUMO

Sugarcane is the main sugar crop, and sugar is an important agricultural product in Egypt. There are many problems with the technology used in the current planting method of sugarcane, which has a great impact on the planting quality of sugarcane, which have a series of problems, such as low cutting efficiency and poor quality. Therefore, the aim of the current study was to design, construct, and field testing of a semiautomatic sugarcane bud chipper assisted with pivot knives for cutting sugarcane buds and germinating them in plastic trays inside a greenhouse until they reached an average length of 35 cm, and then planting them in the field. In the field tests five cutting speeds (35, 40, 45, 50, and 56 rpm. (Revolution Per minute), three cutting knives (1.5, 2.0, and 2.5 mm) were used for cutting sugarcane stalks with four different diameters (1.32, 1.82, 2.43, and 2.68 cm). The obtained results showed that the values of the damage index and invisible losses were within acceptable limits (ranging between - 1.0 and 0.0) for all the variables under the test. Still, the lowest damage index and invisible losses were recorded with the buds that were cut with a knife of 1.5 mm thickness and cutting speeds less than 50 rpm. The skipping rate increases with the increase in cutting speed and stalk diameter, ranging between 0.0 to 13%. The maximum machine productivity was 110 Buds per minute at a cutting speed of 35 rpm and stalk diameter of 1.32 cm. The paper's findings have important application values for promoting the designing and development of sugarcane bud chipper and sugarcane planting technology in the future.


Assuntos
Saccharum , Agricultura , Egito , Registros , Açúcares
2.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450826

RESUMO

Precise and quick estimates of soil moisture content for the purpose of irrigation scheduling are fundamentally important. They can be accomplished through the continuous monitoring of moisture content in the root zone area, which can be accomplished through automatic soil moisture sensors. Commercial soil moisture sensors are still expensive to be used by famers, particularly in developing countries, such as Egypt. This research aimed to design and calibrate a locally manufactured low-cost soil moisture sensor attached to a smart monitoring unit operated by Solar Photo Voltaic Cells (SPVC). The designed sensor was evaluated on clay textured soils in both lab and controlled greenhouse environments. The calibration results demonstrated a strong correlation between sensor readings and soil volumetric water content (θV). Higher soil moisture content was associated with decreased sensor output voltage with an average determination coefficient (R2) of 0.967 and a root-mean-square error (RMSE) of 0.014. A sensor-to-sensor variability test was performed yielding a 0.045 coefficient of variation. The results obtained from the real conditions demonstrated that the monitoring system for real-time sensing of soil moisture and environmental conditions inside the greenhouse could be a robust, accurate, and cost-effective tool for irrigation management.


Assuntos
Solo , Água , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...